

High Speed Computing, Salishan 2002: Next Generation Scalable Network Storage Architecture

Garth Gibson
CTO, Panasas Inc
Assoc Professor, CS & CE, Carnegie Mellon
ggibson@panasas.com, garth@cs.cmu.edu

Technical Market Frustration

Needs run years ahead of market influence

- Files, systems and parallelism much larger than most
 - Expensive bandwidth requirements!
 - Rare levels of data density requirements, incremental growth rates
 - Bin packing giant files often falls to users
- Unique requirements for sharing, reliability and security
 - End users write programs for shared data -- representation standards
 - Raw numbers of components outpace state of the art FT
 - National security intermingled with international collaboration

Moving data through central file servers limits cluster FS

- PCs barely better than disks at moving data, but more expensive
- Storage vendors amortize server costs with lots of disks
- Achievable bandwidth very short of raw disk bandwidth (1-4 Gbps/rack)

Cluster FS too often derived from single process software

- Excessive locking and inter-server data motion
- Specialized hardware not unusual

Scale Architecturally

- Direct, parallel storage access
- Commodity technology with integrated functionality
- Shared-nothing clusters of data & metadata

Direct Access for Bandwidth

Carnegie Mellon
PARALLEL DATA LAB
http://www.pdl.cmu.edu

$Storage\ Network = Client\ Network$

Orders of magnitude increase in cost-effective bandwidth

Carnegie Mellon
PARALLEL DATA LAB
http://www.pdl.cmu.edu

Garth Gibson, Salishan, April 23, 2002

Out-of-band 1: SMP

- Symmetric multi-processor port of server to all client platforms
 - Acquire locks (1), access metadata and data, release locks (3)
 - E.g. GFS/Sistina
- But, bugs in heterogeneous clients & RW access to all storage

Out-of-band 2: Metadata Server

- Central metadata server mediates access to storage
 - Request (1) DMA (2) of data (3) to client (4) by server (5, 6) E.g. HPSS
 - Can cache readonly metadata at client, directly access storage E.g. High Road, SANergy, DirectNFS
- But, metadata changes, including allocation, centralized

Out-of-band 3: Object Storage

- File/object storage management in storage device (inode-like)
 - Request (1, 2) and cache rights to read/write/extend objects on disks (3, 4) E.g. CMU NASD, Lustre
- But, changes in storage device standards (integrated solutions)

Incremental Growth

Computer science's duct tape: a level of indirection per object

 RAID remapping already there but hidden from file system and shared over many unrelated objects

Striping/RAID representation should be dynamic, file-specific

- Escrow capacity, defer allocation for fast path efficiency
- Cache coherent, on-the-fly remapping for balancing and incremental growth
- Embed representation in object attributes, extensible for QoStorage specification

Scaling Reliability

- Flexible allocation enables declustering of redundancy groups
- Evenly distribute groups in larger arrays, reducing recovery work per disk
- Couple with integral spare space & failure recovery time, R, is linear in declustering ratio (~G/C)
- MTTDL = K/(C*R), inversely proportional to size and recovery time becomes, MTTDL = K/G, independent of size
- Requires XOR and net bandwidth to scale with number of devices, and declustered server failover

Total Cost of Ownership Control

Cost:

Commodity components lower capital costs of primary and nearline disk storage

Effort:

Appliance-like simplicity, cluster-wide management commands, automatic balancing, and per-file customization by performance API or policies

Recovery:

Exploit speed to reduce backup time, recovery time Transparent failover of metadata server

Source:

Gartner Group, May 2001

Scaling Metadata Service

Command processing of most operations in storage (or clients) offloads 90% of small file/productivity workload from servers

NFS Operation	Count in top 2% by work (K)	File Server (SAD)		DMA (NetSCSI)		Object (NASD)	
		Cycles (B)	% of SAD	Cycles (B)	% of SAD	Cycles (B)	% of SAD
Attr Read	792.7	26.4	11.8	26.4	11.8	0.0	0.0
Attr Write	10.0	0.6	0.3	0.6	0.3	0.6	0.3
Data Read	803.2	70.4	31.6	26.8	12.0	0.0	0.0
Data Write	228.4	43.2	19.4	7.6	3.4	0.0	0.0
Dir Read	1577.2	79.1	35.5	79.1	35.5	0.0	0.0
Dir RW	28.7	2.3	1.0	2.3	1.0	2.3	1.0
Delete Write	7.0	0.9	0.4	0.9	0.4	0.9	0.4
Open	95.2	0.0	0.0	0.0	0.0	12.2	5.5
Total	3542.4	223.1	100	143.9	64.5	16.1	7.2

Storage Access Security

State of art is VPN of all out-of-band clients, all sharable (meta)data

Accident prone and vulnerable to subverted client Private Communication NASD Integrity/Privacy File manager Request for access 2: CapArgs, CapKey Secret Key CapKey= MAC_{SecretKey}(CapArgs) CapArgs= ObjID, Version, Rights, Expiry,.... Client Object Storage uses a digitally ReqMAC = MAC_{CapKey}(Req,Nonceln) signed, objectspecific capabilities 3: CapArgs, Req, Nonceln, ReqMAC on each request NASD 4: Reply, NonceOut, ReplyMAC

Carnegie Mellon
PARALLEL DATA LAB
http://www.pdl.cmu.edu

Secret Key

Garth Gibson, Salishan, April 23, 2002

ReplyMAC = MAC_{CapKev} (Reply,NonceOut)

Object storage: When competitive?

NSIC first draft collaboration (96-99)

- CMU, IBM, Seagate, HP, STK, Quantum
- CMU releases software (Extreme NASD)

SNIA OSD TWG and ANSI T10 OSD WG

- Featured in SNIA technical council shared storage model taxonomy
- SNIA TWG chaired by Intel and Ciprico T10 WG chaired by Ralph Weber
- Sun, STK, Seagate, MTI, HP, Panasas
- Strong leveraging of iSCSI draft standard

Rumors of possible commercial variations

- IBM Storagetank (FAST), EMC (Eweek), Sun (Byte&Switch)
- Stay tuned ...

Storage Networking Industry Association, 2001

Next Generation Agile Storage

- Out-of-Band for bandwidth, parallelism, fast recovery
- Commodity components integrated for cost effectiveness
- Shared-nothing clustering scales
- Self-describing data for dynamic, file-specific representation
- Object Interfaces encourage CPU, memory & link speed to scale in proportion to spindles

www.panasas.com